Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing.
نویسندگان
چکیده
Heparanase is a mammalian endo-beta-D-glucuronidase capable of cleaving HS side chains at a limited number of sites, activity that is strongly implicated in tumor metastasis, neovascularization, inflammation, and autoimmunity. Clinically, up-regulation of heparanase mRNA and protein expression has been documented in a variety of primary human tumors, correlating with reduced postoperative survival and increased lymph node and distant metastasis, thus providing strong clinical support for the prometastatic feature of the enzyme and making it an attractive target for the development of anticancer and anti-inflammatory drugs. Screening a panel of monoclonal antibodies for their ability to inhibit heparanase enzymatic activity, we noted that one hybridoma, 6F8, exhibited the opposite effect and significantly enhanced heparanase activity. Here, we provide evidence that antibody 6F8 enhances the activity of recombinant and cellular heparanase, facilitates invasion of tumor-derived cells in vitro, and improves wound healing in a mouse punch model in vivo. These results support a role of heparanase in the course of wound healing and, moreover, suggest that monoclonal antibodies can be applied clinically for the enhancement, rather than inhibition, of certain enzymes.
منابع مشابه
Processing and activation of latent heparanase occurs in lysosomes.
Heparanase is a heparan sulfate degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Heparanase is synthesized as a 65 kDa non-active precursor that subsequently undergoes proteolytic cleavage, yielding 8 kDa and 50 kDa protein subunits that heterodimerize to form an active enzyme. The protease responsible for heparanase processing is currently unknown, as...
متن کاملRegulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis.
Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic r...
متن کاملHeparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans
Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domai...
متن کاملSoluble Heparan Sulfate Fragments Generated by Heparanase Trigger the Release of Pro-Inflammatory Cytokines through TLR-4
Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate (HS), facilitating degradation of the extracellular matrix (ECM) and the release of HS-bound biomolecules including cytokines. The remodeling of the ECM by heparanase is important for various physiological and pathological processes, including inflammation, wound healing, tumour angiogenesis and metastasis. Although heparanase h...
متن کاملInvolvement of heparanase in tumor metastases: a new target in cancer therapy?
Ultimately, the cause of death for many cancer patients is the presence of metastases, the spread of the cancer from primary to distant sites. One of the critical steps in metastasis is the ability of tumor cells to degrade basement membrane structures that underlie the epithelial and endothelial cell layers, and much research has focused on the identification of genes that contribute to this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2007